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A general approach to systematically derive the equations of motion of flexible
open-kinematic chains is presented in this paper. The methodology exploits the
serial characteristic of the kinematic chain by complementing the 4×4
Denavit–Hartenberg transformation matrix with a 4×4 structural flexibility
matrix. The latter is defined based on a floating coordinate system which rendered
the formulation applicable to both prismatic and revolute joints. The versatility
of the approach is demonstrated through its implementation to formulate forward
kinematic problems of manipulators with revolute and prismatic joints. Moreover,
the proposed flexibility matrix is used in the development of a dynamic model for
a compliant spherical robotic manipulator. This task has a dual purpose. First,
it demonstrates how the flexibility matrix can be implemented in a systematic
approach for deriving the equations of motion of an open-kinematic chain that
account for the axial geometric shortening, the torsional vibration, and the
in-plane and out-of-plane transverse deformations of the compliant member.
Second, the inclusion of the torsional vibration in the equations of motion serves
to broaden the scope of previous research work done on modelling open-kinematic
chains. The formulation can now address dynamic problems that are not limited
to the positioning but are also concerned with the orientation of rigid body
payloads as they are being manipulated by robotic manipulators. The digital
simulation results exhibit the interaction between the torsional vibration and the
rigid body motion of the arm. Furthermore, they demonstrate a strong coupling
effect between the torsional vibration and the transverse deformations of the arm
whenever the payload is not grasped at its mass center by the gripper.
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1. INTRODUCTION

Many models have been developed to predict the rigid and flexible motions of
open-kinematic chains by using the general vector-dyadic formulation [1–3]. The
conceptual framework of this method does not exploit the inherent characteristics
of kinematic chains in order to simplify the derivation of the equations of motion.

Sunada and Dubowsky [4] have used the 4×4 Denavit–Hartenberg (D–H)
homogeneous transformation matrix [5] along with the Lagrange principle to
derive the equations of motion of flexible manipulators that are made of irregular
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shaped links. The flexible motion was treated as deviations from the nominal rigid
body motion of the linkage. Furthermore, the kinematics of the ith link were
assumed to be unaffected by the deformations of the superseding links in the chain.

Book [6] introduced a 4×4 structural flexibility matrix to be used along with
the D–H transformation matrix to provide a conceptually straightforward
approach for modelling flexible manipulators. The methodology requires two
co-ordinate systems to be assigned at the end-points of each compliant link. The
deformations at the distal end of the member are represented by defining the origin
and orientation of the distal co-ordinate system with respect to the D–H frame.
This approach considers the interaction between the rigid and flexible motions and
do not assume a nominal rigid body motion of the manipulator. However, the
usage of a body fixed co-ordinate system has limited the application of this
technique to articulated manipulators. Similar approaches have also been
implemented by Judd and Falkenburg [7], Matsuno and Sakawa [8] and Li and
Sankar [9].

To render the methodology applicable to flexible kinematic chains with
prismatic joints, the current formulation implements a 4×4 structural flexibility
matrix that is derived based on a floating co-ordinate system [10]. The flexibility
matrix describes the general deformations at an arbitrary point on the neutral axis
of the beam. It considers the longitudinal, torsional, in-plane and out-of-plane
transverse deformations along with the effects of rotary inertia, shear deformation
and axial geometric shortening.

The versatility of the current structural flexibility matrix is demonstrated
through its implementation to formulate forward kinematic problems of
manipulators with revolute and prismatic joints. Furthermore, the proposed
flexibility matrix is used in the development of a dynamic model for a compliant
spherical robotic manipulator. This step has a dual purpose. First, it demonstrates
how the flexibility matrix can be implemented in a systematic approach for
deriving the equations of motion of an open-kinematic chain that take into
consideration the axial geometric shortening, the torsional vibration, the in-plane
and out-of-plane transverse deformations of the compliant link. Second, the
inclusion of the torsional vibration in the equations of motion serves to broaden
the scope of previous research work done in the area of modelling open-kinematic
chains. The formulation can now address dynamic problems that are not limited
to the positioning but also concerned with the orientation of rigid body payloads
as they are being manipulated by robotic manipulators.

It should be mentioned that most of the available literature have focused on the
interaction between the rigid body motion and the in-plane and out-of-plane
transverse deformations of the links [1, 2, 11–15]. As a result, most of these studies
are limited in their scope of applications to point mass payloads.

Sakawa and Luo [16] have developed a model for a single rotating beam that
considers the first two elastic modes for each of the torsional and transverse
deformations of the beam. In addition, a rigid body payload is attached, at its mass
center, to the free-end of the rotating beam. As a consequence, the torsional and
transverse deformations became uncoupled. Moreover, the stiffening effect,
induced by the centripetal acceleration, has also been ignored in the formulation.
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In general, the gripper of the robot arm grasps the payload by one of its
extremities. Holding the manipulated object at a different point than its mass
center will subject the robotic manipulator to torques whose magnitudes vary with
the robot arm configuration and operating speed. These undesirable torques tend
to induce torsional vibrations in the arm which can directly affect the orientation
of the manipulated objects. Therefore, the torsional vibrations can no longer be
ignored in the equations of motion of robotic manipulators which are intended
to perform accurate maneuvers of objects in space.

In this paper, the procedure for constructing a 4×4 structural flexibility matrix,
based on a floating co-ordinate system, is presented in section 2. Subsequently, the
flexibility matrix is implemented to formulate forward kinematic problems of
manipulators with revolute and prismatic joints. In section 4, the dynamic model
for a spherical robot arm, which considers the torsional and transverse
deformations of the robotic manipulator, is derived in detail. The digital
simulation results, presented in section 5, exhibit the arm responses during
point-to-point (PTP) maneuvers. They illustrate the relationships with which the
rigid body motion and the transverse deformations would interact with the
torsional vibrations of the manipulator. Finally, the work is summarized and the
main contributions are highlighted.

2. DERIVATION OF THE STRUCTURAL FLEXIBILITY
TRANSFORMATION MATRIX

The formulation of the 4×4 structural flexibility transformation matrix,
currently available in the literature, is restricted in its application to revolute joints.
The objective herein is to build on previous work to generalize the structural
flexibility matrix so that it can be applied to deformable beams that are connected
to either revolute or prismatic joints.

A general deformation of a beam may involve torsional, axial, in-plane and
out-of-plane transverse deflections. Furthermore, the prismatic joint brings about
the possibility of having a beam length to thickness ratio of less than 10 (thick
beam). Therefore, the rotary inertia and shear deformation effects have to be
included in the formulation of the structural flexibility matrix [17]. Moreover, the
axial geometric shortening effect is introduced in the current formulation to
represent the axial displacement undergone by any point on the compliant link due
to bending.

A 3-D elastic body, depicted in Figure 1, is used in the development of the
general form for the structural flexibility transformation matrix. A point O0,
belonging to both deformed and undeformed configurations of the body, is
assumed to be fixed in space. An inertial coordinate system, {x0, y0, z0}, is attached
at O0. Furthermore, a floating frame, {x'1 , y'1 , z'1}, is considered to be fixed at point
O'1 in the undeformed configuration of the elastic body. As the structure deforms,
O'1 takes up a new location at O1 and {x'1 , y'1 , z'1} adopts a new orientation defined
by {x1, y1, z1}. The deformations of the body at O1 are captured by the position
vector locating O1 with respect to O'1 . The slopes of the beam, incurred by its elastic
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deformations, are accounted for in the rotation matrix describing the orientation
of {x1, y1, z1} with respect to {x'1 , y'1 , z'1}.

Therefore, the problem of determining the deformations of the body at O1

becomes a one of formulating a 4×4 transformation matrix that defines the
location and orientation of {x1, y1, z1} with respect to {x'1 , y'1 , z'1}. This is done by
adopting the partitioned form of the 4×4 D–H transformation matrix

T1
1' = & R1

1'

–––
O1×3

=
=
=

D1
1'

–––
1 ', (1)

where R1
1' is formulated based on a set of Euler angles to uniquely describe the

orientation of {1} with respect to {1'}. The first Euler angular displacement
consists of rotating {x'1 , y'1 , z'1} by a1 around the z'1 -axis to obtain a new set of
co-ordinates {x', y', z'}. During the second angular displacement, the newly
formed co-ordinate system is rotated by a2 around the y'-axis to get {x0, y0, z0}.
The last angular displacement is responsible for rotating {x0, y0, z0} by a3 around
the x0-axis to obtain {x1, y1, z1}. For large deformations, R1

1' is derived by treating
the angular displacements a1, a2 and a3 as finite rotations. Therefore, through
sequential transformations, R1

1' can be written as

R1
1' =R(x',y',z')

1' R(x0,y0,z0)
(x',y',z') R1

(x0,y0,z0)

= &ca1ca2

sa1ca2

−sa2

ca1sa2sa3 − sa1ca3

sa1sa2sa3 + ca1ca3

ca2sa3

ca1sa2ca3 + sa1sa3

sa1sa2ca3 − ca1sa3

ca2ca3 '. (2)

Figure 1. A three-dimensional schematic of a body undergoing a general deformation.
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Figure 2. A clamped–free beam undergoing a general deformation.

However, for small deformations, the rotations can be assumed to be
infinitesimal. Consequently, R1

1' is reduced to

R1
1' = & 1

a1

−a2

−a1

1
a3

a2

−a3

1 '. (3)

Assuming small deformations, the structural flexibility transformation matrix for
a 3-D elastic body can be expressed as

T1
0 =T1'

0 T1
1' = & R1'

0

–––
O1×3

=
=
=

D1'
0

–––
1 '& R1

1'

–––
O1×3

=
=
=

D1
1'

–––
1 '. (4)

Note that R1'
0 is a constant matrix. Furthermore, without loss of generality,

{x0, y0, z0} and {x'1 , y'1 , z'1} co-ordinates can be selected to have the same
orientation in space. Thus, R1'

0 = I3×3, which yields the following general form for
the structural flexibility matrix:

= x0 1 −a1 a2 = u

I3×3 = y0 a1 1 −a3 = v

T1
0 = = z0 −a2 a3 1 = wG
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O1×3 = 1 0 0 0 = 1

1 −a1 a2 = x0 + u

a1 1 −a3 = y0 + v

= −a2 a3 1 = z0 +w . (5)G
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l
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For the special case of a beam-like structure, depicted in Figure 2, a1, a2 and a3

correspond to cy0, −cz0 and cx0, respectively. Note that cx0 represents the
torsional vibration of the beam. Whereas, cy0 and cz0, which are induced by
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shearing and bending deformations, are expressed as v,x0 − gxy0 and w,x0 − gxz0,
respectively. By considering the small deformations assumption, the flexibility
matrix becomes

1 −cy0 −cz0 = x0 + u

cy0 1 −cx0 = v

T1
0 = cz0 cx0 1 = w . (6)G

G

G

G

G

K

k

G
G

G

G

G

L

l
–– –– –– – –––

0 0 0 = 1

Note that the axial deformation, u, consists of the following two components:

u= ul + ua = ul −
1
2 g

x0

0 601v(m, t)
1m 1

2

+01w(m, t)
1m 1

2

7 dm, (7)

where ul is the longitudinal deformation and ua represents the axial geometric
shortening undergone by the beam due to its transverse deformations.

The augmented position vector of an arbitrary point A, on the cross-section of
the beam that passes through O1, can be systematically determined from

{r{0}T

A =1}T =T1
0{r{1}T

A =1}T =T1
0{0 y1 z1 = 1}T. (8)

Note that y1 = y0 and z1 = z0 if the Poisson’s ratios are ignored.

3. IMPLEMENTATION OF THE STRUCTURAL FLEXIBILITY
TRANSFORMATION MATRIX

The versatility of the proposed structural flexibility matrix is demonstrated
through its implementation to formulate forward kinematic problems of kinematic
chains with revolute and prismatic joints.

Figure 3. Articulated open-kinematic chain.
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3.1.  :         

Consider the (i−1)th and ith members of an articulated multi-link chain (see
Figure 3). Only the in-plane and out-of-plane transverse deformations along with
their axial geometric shortening effects are included herein. A local co-ordinate
system {x'i−1, y'i−1, z'i−1} is attached to an arbitrary point P on the neutral axis of
the (i−1)th link. The structural flexibility matrix, T(i−1)'

i−1 , can be directly obtained
from equation (6) by deleting the terms corresponding to torsional and
longitudinal vibrations. It can be written as

1 −cyi−1 −czi−1 = xi−1 + uai−1

cyi−1 1 0 = vi−1

T(i−1)'
i−1 = czi−1 0 1 = wi−1 . (9)G
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G

G

G
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k

G
G

G
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G

L

l
–– –– –– – –––

0 0 0 = 1

For an Euler–Bernoulli beam, the total rotations of the local co-ordinate
{x'i−1, y'i−1, z'i−1} are induced by bending only. As a consequence, the expressions
for cyi−1 and czi−1 will be reduced to vi−1,xi−1 and wi−1,xi−1, respectively.

The augmented position vector of any point A, located on the cross-section of
the (i−1)th beam that passes through point P, can be obtained from

{r{0}T

A =1}T =Ti−1
0 T(i−1)'

i−1 {r{i−1}'T

A =1}T =Ti−1
0 T(i−1)'

i−1 {0 y'i−1 z'i−1 = 1}T. (10)

Similar reasoning is followed to determine the position vector of an arbitrary
point on the ith link. First, define {x'(i−1)e , y'(i−1)e , z'(i−1)e} to be {x'i−1, y'i−1,
z'i−1} when its origin coincides with the distal end-point Oi on the neutral axis of
the (i−1)th link. Then, the rigid body motion of the ith link, relative to the
(i−1)th link, can be accounted for by introducing a new frame, {i}. The latter
is assigned by rotating {x'(i−1)e , y'(i−1)e , z'(i−1)e} by an angle ui around the z'(i−1)e -axis.
The transformation matrix, defining {i} with respect to {(i−1)'e }, can be written
as

cui −sui 0 = 0

sui cui 0 = 0

Ti
(i−1)'e = 0 0 1 = 0 . (11)G
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Next, the general deformation of the ith link is described by defining a local
co-ordinate system {x'i , y'i , z'i } at an arbitrary point C on the neutral axis of the
ith link. Through sequential transformations, the absolute position vector of any
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Figure 4. Open-kinematic chain with revolute and prismatic joints.

point B, located on the cross-section of the beam that passes through C, can be
expressed as

1 −cyi −czi = xi + uai 0

r{0}
B cyi 1 0 = vi y'i

–– =Ti−1
0 T(i−1)'e

i−1 Ti
(i−1)'e czi 0 1 = wi z'i .g
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1 –– –– –– – ––– ––

0 0 0 = 1 1

(12)

Once again by ignoring Poisson’s ratios in the above formulation, one can set
y'i−1 = yi−1, z'i−1 = zi−1, y'i = yi and z'i = zi .

3.2.  :         

 

To expand the implementation of the flexibility matrix, assume that the (i−1)th
and ith links are connected to a revolute and prismatic joints, respectively (see
Figure 4). The length of the portion of the ith link protruding from the (i−1)th
member can vary with time. Therefore, the ratio of the beam length to its thickness
may become less than 10 (thick beam). Thus, the rotary inertia and shear
deformation effects must be included in the derivation by implementing the
Timoshenko beam theory. Furthermore, the axial geometric shortening effect,
resulting from the in-plane and out-of-plane transverse deformations, are also
accounted for in the formulation.

The absolute position vector of any point A on the (i−1)th member follows
directly from equations (9) and (10). To reflect the rotary inertia and shear
deformation effects, cyi−1 and czi−1 are expressed as vi−1,xi−1 − gxyi−1 and
wi−1,xi−1 − gxzi−1, respectively. In addition, the co-ordinate system {x(i−1)'e ,
y(i−1)'e , z(i−1)'e} is defined in a similar fashion as in the previous case. However, the
frame, {i}, is assigned by rotating {x(i−1)'e , y(i−1)'e , z(i−1)'e} in a manner complying
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with the D–H rules for a prismatic joint. The constant transformation matrix,
Ti

(i−1)'e , is defined to be

0 0 1 = 0

1 0 0 = 0

Ti
(i−1)'e = 0 1 0 = 0 . (13)G
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G
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l
– – – – –

0 0 0 = 1

The prismatic joint causes the part of the ith link, protruding from the (i−1)th
link, to exhibit a different level of vibrations than the portion of the ith member
located inside the (i−1)th link (see Figure 5). Therefore, these two portions of
the ith link have to be modelled separately. A floating co-ordinate system is
assigned to each part of the ith link at an arbitrary point on their neutral axes.
For the {xR

i ', yR
i ', zR

i '} frame, a1, a2 and a3 in equation (3) correspond to cR
zi
, cR

xi

and −cR
yi
, respectively (see Figures 4 and 5). Note that cR

xi
and cR

yi
are equal to

uR
i,zi

− gR
xzi

and vR
i,zi

− gR
yzi

, respectively; whereas, cR
zi

is set to zero since the torsional
vibration is ignored in this problem. Therefore, the absolute position vector of an
arbitrary point BR , in the (xR

i ', yR
i ') plane, can be expressed as (see Figure 4):

{r{0}T

BR
=1}T =Ti−1

0 T(i−1)'e
i−1 Ti

(i−1)'eT
iR
i '{r{i}'T
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=1}T

1 0 cR
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= uR
i xR

i '

0 1 cR
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= vR
i yR

i '

=Ti
0 −cR
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−cR

yi
1 = zi +wR

ai
0 . (14)G
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Note that xR
i '= xi and yR

i '= yi since the Poisson’s ratios are ignored in this study.
zi represents the translational rigid body degree-of-freedom introduced by the

Figure 5. A deformed beam connected to a prismatic joint.
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Figure 6. Schematic of the flexible spherical robotic manipulator.

prismatic joint. Next, the absolute position vector of an arbitrary point BL , in the
(xL

i ', yL
i ') plane, is defined to be

{r{0}T

BL
=1}T =Ti−1

0 T(i−1)'e
i−1 Ti

(i−1)'eT
iL
i TiL

iL '{r
{i}'T
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1 0 cL
xi
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i (zL

i , t) xL
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0 −1 −cL
yi

= −vL
i (zL
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=Ti
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It should be emphasized that cL
xi

and cL
yi

represent uL
i,zi

− gL
xzi

and vL
i,zi

− gL
yzi

rotations
around the yL

i and −xL
i axes, respectively (see Figures 4 and 5). Again, xL

i and yL
i

are equal to xi and −yi , respectively. zL
i corresponding to the portion of the ith

link, located inside the (i−1)th link, must satisfy 0E zL
i ELL

i .
One can easily verify that the D–H formulation for the rigid body configuration

of the kinematic chain can be directly recovered from the above derivation by
simply deleting all the structural flexibility terms.

4. DYNAMIC MODELLING OF A FLEXIBLE SPHERICAL
ROBOTIC MANIPULATOR

The current transformation matrix is used herein to systematically derive the
equations of motion for a spherical robotic manipulator (see Figure 6). The
formulation takes into consideration the torsional along with the transverse
deformations of the protruding part of the third link. The first two links of the
robot are treated as rigid bodies. They are connected to revolute joints which
employ harmonic drives. The third link is connected to a prismatic joint whose
indirect drive is comprised of a ball bearing leadscrew. Since the length of the
protruding part of the third link varies with the arm geometric configuration then
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the ratio of the length to the width of the compliant portion of the third link is
kept larger than 10. Hence, the shear deformation can be ignored and the
structural deformation can be adequately formulated by the Euler–Bernoulli beam
theory. In addition, the longitudinal deformation is neglected, since the compliant
beam is much stiffer in the axial direction than in flexure. Moreover, the viscous
damping at the joints are included in the formulation.

An inertial co-ordinate system, having its origin at O0 and its z0-axis coinciding
with the axis of rotation of the base joint, is first assigned (see Figure 6). Then,
a non-inertial co-ordinate system is rigidly attached to each of the first and second
links according to the D–H rules. Moreover, a co-ordinate system {x3, y3, z3} is
attached to the end of the second rather than the third link. This slight
modification of the D–H rules is designed to systematically handle the kinematics
of a compliant link that is connected to a prismatic joint. The z3-axis is assigned
to line up with the neutral axis of the third link. Then, a floating co-ordinate
system, {x'3 , y'3 , z'3}, is assigned such that its z'3 -axis remains tangent to the neutral
axis of the compliant portion of the third link. Finally, the dynamics of the
payload are represented with respect to the {x4, y4, z4} frame which is attached to
the free-end of the third link.

The locations and orientations of the first three frames are defined with respect
to the inertial co-ordinate system according to the following 4×4 matrices:

cu1 −su1 0 = 0

su1 cu1 0 = 0

T1
0 = 0 0 1 = 0 ,G
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The structural flexibility matrix, which describes the deformations at an arbitrary
point on the neutral axis of the protruding part of the third link, is expressed as

1 −cz3 cx3 = u3

cz3 1 cy3 = v3

T3
3'= −cx3 −cy3 1 = z3 +w3 . (17)G
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G

K

k

G
G

G
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l
–– –– –– – ––

0 0 0 = 1

Since the rotary inertia and shear deformations are ignored then cx3 and cy3 become
equal to u3,z3 and v3,z3, respectively. In addition, cz3 represents the torsional vibration
of the third link, f, around z3-axis. It should be mentioned that the location and
orientation of {x4, y4, z4} with respect to {x3, y3, z3} can be readily obtained by
evaluating T3

3' at z3 = r.
The extended absolute position vector of an arbitrary point, A, on the ith link

can be determined from

{r{0}T

A =1}T =Ti'
0{r{i}'T

A =1}T, (18)

whose time derivative is given by

{ṙ{0}T

A =1}T =T� i'
0{r{i}'T

A =1}T +Ti'
0{ṙ{i}'T

A =1}T. (19)

Note that in the case of a rigid ith link, the prime should be ignored in the above
formulation.

The structural flexibility terms, u3, v3 and f, are approximated by using the
assumed modes method. The admissible functions are selected to be the
eigenfunctions of the torsional, in-plane and out-of-plane transverse deformations
of a clamped–free beam. In addition, it is assumed that u3, v3 and f are dominated
by the first two elastic modes. This is because higher modes are unlikely to be
excited due to the limited bandwidth of the joint actuators. Consequently, one can
write

u3(z3, t)= s
2

i=1

Fi (z3)u3i (t), v3(z3, t)= s
2

i=1

Fi (z3)v3i (t),

f(z3, t)= s
2

i=1

Ci (z3)fi (t). (20)

It should be pointed out that the elastic modes are derived based on the simple
beam theory which do not account for the axial geometric shortening effect of the
beam. The latter is required to preserve the inextensional characteristic of a beam
of which one of its extremities is free from any displacement constraint. To correct
for the deficient mode shapes, the axial elastic displacement, w3, in T3

3' is defined
to be the axial geometric shortening of the neutral axis, w3a , induced by the
transverse deformations. This effect, which is not captured by the mode shapes
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that are used in the discretization of the structural flexibility terms, can be
described as follows:

w3a (z3, t)=−
1
2 g

z3

0 $01u3

1a1
2

+01v3

1a1
2

% da. (21)

Now that the expressions of the position and velocity vectors are fully defined,
the kinetic energy term can be derived. Since the first and second links undergo
fixed point rotations, then their kinetic energy expressions can be written in the
form

T1 =
1
2

s
2

i=1

v{i}T

i Hiv
{i}
i , (22)

where v{1}
1 = u� 1k1 and v{2}

2 = u� 1 cos u2i2 − u� 1 sin u2j2 + u� 2k2. The payload and the
portion of the third link, located inside the second link, are treated as rigid bodies
undergoing translations and rotations. Their kinetic energy expressions can be
determined from

T2 =
1
2 0v{3}T

3r H3rv
{3}
3r +v{4}T

6 H6v
{4}
6 + s

i=3r&6

mi ṙ{0}
imc

· ṙ{0}
imc1, (23)

where v{3}
3r = u� 1 cos u2i3 + u� 2j3 + u� 1 sin u2k3. Since the payload is assumed to be

rigidly attached to the free-end of the third link, its angular velocity vector
becomes

v{4}
6 = (v{4}

3f )z3 = r = 8u� 1 cos u2 +cz3u� 2 −cx3u� 1 sin u2 −c� y3

u� 2 −cz3u� 1 cos u2 −cy3u� 1 sin u2 +c� x3

u� 1 sin u2 +cx3u� 1 cos u2 +cy3u� 2 +c� z39
z3 = r

. (24)

The kinetic energy expressions of the compliant portion of the third link along
with the ball-bearing leadscrew assembly and the gripper can be determined from

T3 =
1
2 gm3f

ṙ{0}
3f · ṙ{0}

3f dm3f +
1
2

s
5

i=4

mi ṙ{0}
i · ṙ{0}

i . (25)

The total kinetic energy of the robotic manipulator can then be obtained by adding
the above expressions for T1 to T3.

Next, the potential energy of the robot arm is expressed as

V=
1
2 g

r

0

{EI[u2
3,z3z3

+ v2
3,z3z3

]+GJf2} dz3 +g
r

0

rA3(r{0}
3f · gk0) dz3

+s
i

gk0 · mi r{0}
imc

, i=1, 2, 3r, 4, 5 and 6, (26)

where the datum line is considered to coincide with the x0-axis.
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T 1

Numerical values for the robot parameters

Length of the second link (L2) 0·533 m
Length of the third link (L3) 0·77 m
Diameter of the third link (D3) 0·0127 m
Mass moment of inertia of the first link around
the z0-axis 0·259 kg · m2

Mass moment of inertia of the second link around 0·401, 0·015,
the x2, y2 and z2 axes, respectively 0·408 kg · m2

Mass of the second link (m2) 9·424 kg
Mass of the end-effector (me ) 0·127 kg
Mass of the payload (mp ) 0·213 kg

5. DIGITAL SIMULATION RESULTS

A linear quadratic regulator with an integral action (LQI) controller is
implemented to perform point-to-point (PTP) maneuvers of the arm. The
controller is designed based on a linearized version of the rigid body equations
of motion of the robotic manipulator. The reduced state vector along with the
controller weighting matrices are defined to be

xT
r =$u1, u2, r, u� 1, u� 2, ṙ, g (u1 − u1d ) dt, g (u2 − u2d ) dt, g (r− rd ) dt%,

Qr =diag [0·1, 0·1, 0·1, 0, 0, 0, 10, 10, 10], Rr =diag [1, 1, 1]×10−6. (32)

The LQI controller is then applied on the full non-linear model of the robotic
manipulator whose geometric dimensions are listed in Table 1. The full state vector
is given by x̄T =[qT, q̇T, f (u1 − u1d ) dt, f (u2 − u2d ) dt, f (r− rd ) dt]. The arm is
assigned a PTP task with the initial and final states defined to be
x̄T

0 = {0 0 0·2 = 01×18} and x̄T
F = {90° 60° 0·6 = 01×18}, respectively. Initially, the

payload is considered to be grasped at its mass center by the gripper. The
oscillations of the in-plane and out-of-plane transverse deformations at the
end-effector are shown in Figures 7 and 8, respectively. The interaction between

Figure 7. In-plane transverse deformation at the end-effector generated while holding the payload
at its mass center.
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Figure 8. Out-of-plane transverse deformation at the end-effector generated while holding the
payload at its mass center.

Figure 9. Torsional vibration at the end-effector generated while holding the payload at its mass
center.

Figure 10. In-plane transverse deformation at the end-effector generated with an offsetted
payload.

the torsional vibration and the rigid body motion of the arm is clearly manifested
in Figure 9. The initial excitation of the torsional vibration is induced by the
inertial forces during the transient period of the arm response. Furthermore, the
steady state response of f is virtually undisturbed because the torsional and
transverse deformations of the third link are decoupled whenever the payload is
held by its mass center.
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Figure 11. Out-of-plane transverse deformation at the end-effector generated with an offsetted
payload.

Figure 12. Torsional vibration at the end-effector generated with an offsetted payload.

Next, the same PTP maneuver is repeated while grabbing the payload in such
a manner that its mass center co-ordinates are located at x4 =−0·0707m,
y4 =−0·0707m and z4 =0m with respect to the gripper. Figures 10 and 11 reveal
slightly smaller amplitudes for the transverse deformations than their counterparts
from Figures 7 and 8 during the transient phase of the arm response. Furthermore,
the low frequency component in the f plot manifests the interaction between the
transverse and torsional vibrations of the third link which is triggered by the offset
of the payload mass center with respect to the end-effector (see Figure 12). It
should also be mentioned that the non-zero steady state values of the torsional
vibration, f, and the in-plane transverse deformation, v3, are caused by the static
torque and force arising from the offset of the payload.

6. SUMMARY AND CONCLUSIONS

The structural flexibility matrix is intended to complement the D–H
transformation matrix in the development of a conceptually straightforward
modelling approach that exploits the inherent serial characteristic of compliant
open-kinematic chains. The structural flexibility matrices, currently available in
the literature, are derived based on a body fixed co-ordinate system which limits
their application to articulated kinematic chains. The present formulation departs
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from previous work by deriving the structural flexibility matrix with respect to a
floating co-ordinate system. As a result, the formulation can now describe
deformations of beams that are connected to either prismatic or revolute joints.
In addition, the flexibility matrix, developed herein, can represent the torsional,
longitudinal, in-plane and out-of-plane transverse deflections along with their axial
geometric shortening, rotary inertia and shear deformation effects.

The versatility of the current formulation is demonstrated by implementing the
D–H and flexibility matrices to solve forward kinematic problems of flexible
manipulators with revolute and prismatic joints. Furthermore, the proposed
flexibility matrix is used in the development of a dynamic model for a spherical
robotic manipulator. This task has a dual purpose. First, it demonstrates how the
flexibility matrix can be implemented in a systematic approach for deriving the
equations of motion of an open-kinematic chain that take into account the axial
geometric shortening, the torsional vibration, the in-plane and out-of-plane
transverse deformations of the compliant link. Second, the inclusion of the
torsional vibration in addition to the transverse deformations in the equations of
motion has served to broaden the scope of previous research work, done on
modelling open-kinematic chains, to address dynamic problems that are not
limited to the positioning but also concerned with the orientation of rigid body
payloads as they are being manipulated by multi-link robotic manipulators. The
digital simulation results have revealed the interaction between the torsional
vibration and the rigid body motion of the arm. Moreover, they have
demonstrated a strong coupling effect between the torsional vibration and the
transverse deformations of the arm whenever the payload is not grasped at its mass
center by the gripper.
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APPENDIX: NOMENCLATURE

A3 cross-sectional area of the third link
EI flexural rigidity of the third link
f3 control force at the prismatic joint
F(q, q̇) vector including all inertial forces, stiffness and damping terms
G, g shearing modulus of elasticity and gravitational acceleration, respectively
Hi inertia tensor of the ith component defined with respect to the ith frame
J polar moment of inertia of the cross-sectional area of the third link with

respect to the z3-axis
Li length of the ith link
M(q) inertia tensor of the entire robotic manipulator
me , mi , mp mass of the end-effector, the ith member and the payload, respectively
QNC non-conservative generalized force vector
r length of the protruding part of the third link from the second link
r{i}

A position vector of an arbitrary point A with respect to the ith frame
r{0}

imc
position vector of the mass center of the ith component of the robot arm
with respect to the inertial frame

u, v, w elastic displacements of an arbitrary point on the neutral axis along the x,
y and z axes, respectively

(xi , yi , zi ) local co-ordinates of an arbitrary point in the undeformed configuration of
the ith link

gxy , gxz shear deformation in the (x, y) and (x, z) planes, respectively
ui rigid body angular displacement of the ith link relative to the (i−1)th link
r density of the third link
ti control torque at the ith joint
cx3, cy3, cz3 rotations around the y3, −x3 and z3 axes, respectively
f torsional deformation of the third link around the z3-axis


